Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Small Methods ; : e2300044, 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2306162

RESUMEN

MXene QDs (MQDs) have been effectively used in several fields of biomedical research. Considering the role of hyperactivation of immune system in infectious diseases, especially in COVID-19, MQDs stand as a potential candidate as a nanotherapeutic against viral infections. However, the efficacy of MQDs against SARS-CoV-2 infection has not been tested yet. In this study, Ti3 C2 MQDs are synthesized and their potential in mitigating SARS-CoV-2 infection is investigated.  Physicochemical characterization suggests that MQDs are enriched with abundance of bioactive functional groups such as oxygen, hydrogen, fluorine, and chlorine groups as well as surface titanium oxides. The efficacy of MQDs is tested in VeroE6 cells infected with SARS-CoV-2. These data demonstrate that the treatment with MQDs is able to mitigate multiplication of virus particles, only at very low doses such as 0,15 µg mL-1 . Furthermore, to understand the mechanisms of MQD-mediated anti-COVID properties, global proteomics analysis are performed and determined differentially expressed proteins between MQD-treated and untreated cells. Data reveal that MQDs interfere with the viral life cycle through different mechanisms including the Ca2 + signaling pathway, IFN-α response, virus internalization, replication, and translation. These findings suggest that MQDs can be employed to develop future immunoengineering-based nanotherapeutics strategies against SARS-CoV-2 and other viral infections.

2.
Nanoscale ; 14(2): 239-249, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1585750

RESUMEN

Infectious diseases caused by viral or bacterial pathogens are one of the most serious threats to humanity. Moreover, they may lead to pandemics, as we have witnessed severely with the coronavirus disease 2019 (COVID-19). Nanotechnology, including technological developments of nano-sized materials, has brought great opportunities to control the spreading of such diseases. In the family of nano-sized materials, two-dimensional (2D) materials with intrinsic physicochemical properties can efficiently favor antimicrobial activity and maintain a safer environment to protect people against pathogens. For this purpose, they can be used alone or combined for the disinfection process of microbes, antiviral or antibacterial surface coatings, air filtering of medical equipment like face masks, or antimicrobial drug delivery systems. At the same time, they are promising candidates to deal with the issues of conventional antimicrobial approaches such as low efficacy and high cost. This review covers the antiviral or antibacterial activities of 2D materials and highlights their current and possible future applications. Considering their intrinsic properties, 2D materials will become part of the leading antimicrobial technologies for combating future pandemics anytime soon.


Asunto(s)
Antiinfecciosos , COVID-19 , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Humanos , Pandemias , SARS-CoV-2
3.
Small ; 17(25):2170123, 2021.
Artículo en Inglés | Wiley | ID: covidwho-1287405

RESUMEN

In article number 2101483, Kostas Kostarelos, Açelya Yilmazer, and co-workers report that thin, biological-grade graphene oxide (GO) nanosheets show molecular affinity toward the SARS-CoV-2 viral spike and the ACE2-bound spike complex. GO nanosheets were shown to inhibit the infection of wild-type SARS-CoV-2 experimentally in cell cultures. Through an interplay of molecular dynamics simulations and cell biology, this work demonstrates that graphene oxide sheets could offer a platform to effectively interact and potentially transport other molecules to inactivate SARS-CoV-2.

4.
Small ; 17(25): e2101483, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1227801

RESUMEN

Nanotechnology can offer a number of options against coronavirus disease 2019 (COVID-19) acting both extracellularly and intracellularly to the host cells. Here, the aim is to explore graphene oxide (GO), the most studied 2D nanomaterial in biomedical applications, as a nanoscale platform for interaction with SARS-CoV-2. Molecular docking analyses of GO sheets on interaction with three different structures: SARS-CoV-2 viral spike (open state - 6VYB or closed state - 6VXX), ACE2 (1R42), and the ACE2-bound spike complex (6M0J) are performed. GO shows high affinity for the surface of all three structures (6M0J, 6VYB and 6VXX). When binding affinities and involved bonding types are compared, GO interacts more strongly with the spike or ACE2, compared to 6M0J. Infection experiments using infectious viral particles from four different clades as classified by Global Initiative on Sharing all Influenza Data (GISAID), are performed for validation purposes. Thin, biological-grade GO nanoscale (few hundred nanometers in lateral dimension) sheets are able to significantly reduce copies for three different viral clades. This data has demonstrated that GO sheets have the capacity to interact with SARS-CoV-2 surface components and disrupt infectivity even in the presence of any mutations on the viral spike. GO nanosheets are proposed to be further explored as a nanoscale platform for development of antiviral strategies against COVID-19.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Grafito , Humanos , Proteínas de la Membrana , Simulación del Acoplamiento Molecular , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
5.
Nano Today ; 38: 101136, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1142162

RESUMEN

Two-dimensional transition metal carbides/carbonitrides known as MXenes are rapidly growing as multimodal nanoplatforms in biomedicine. Here, taking SARS-CoV-2 as a model, we explored the antiviral properties and immune-profile of a large panel of four highly stable and well-characterized MXenes - Ti3C2Tx, Ta4C3T x , Mo2Ti2C3T x and Nb4C3T x . To start with antiviral assessment, we first selected and deeply analyzed four different SARS-CoV-2 genotypes, common in most countries and carrying the wild type or mutated spike protein. When inhibition of the viral infection was tested in vitro with four viral clades, Ti3C2T x in particular, was able to significantly reduce infection only in SARS-CoV-2/clade GR infected Vero E6 cells. This difference in the antiviral activity, among the four viral particles tested, highlights the importance of considering the viral genotypes and mutations while testing antiviral activity of potential drugs and nanomaterials. Among the other MXenes tested, Mo2Ti2C3T x also showed antiviral properties. Proteomic, functional annotation analysis and comparison to the already published SARS-CoV-2 protein interaction map revealed that MXene-treatment exerts specific inhibitory mechanisms. Envisaging future antiviral MXene-based drug nano-formulations and considering the central importance of the immune response to viral infections, the immune impact of MXenes was evaluated on human primary immune cells by flow cytometry and single-cell mass cytometry on 17 distinct immune subpopulations. Moreover, 40 secreted cytokines were analyzed by Luminex technology. MXene immune profiling revealed i) the excellent bio and immune compatibility of the material, as well as the ability of MXene ii) to inhibit monocytes and iii) to reduce the release of pro-inflammatory cytokines, suggesting an anti-inflammatory effect elicited by MXene. We here report a selection of MXenes and viral SARS-CoV-2 genotypes/mutations, a series of the computational, structural and molecular data depicting deeply the SARS-CoV-2 mechanism of inhibition, as well as high dimensional single-cell immune-MXene profiling. Taken together, our results provide a compendium of knowledge for new developments of MXene-based multi-functioning nanosystems as antivirals and immune-modulators.

6.
Can J Physiol Pharmacol ; 99(5): 449-460, 2021 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1125455

RESUMEN

Ribavirin is a guanosine analog with broad-spectrum antiviral activity against RNA viruses. Based on this, we aimed to show the anti-SARS-CoV-2 activity of this drug molecule via in vitro, in silico, and molecular techniques. Ribavirin showed antiviral activity in Vero E6 cells following SARS-CoV-2 infection, whereas the drug itself did not show any toxic effect over the concentration range tested. In silico analysis suggested that ribavirin has a broad-spectrum impact on SARS-CoV-2, acting at different viral proteins. According to the detailed molecular techniques, ribavirin was shown to decrease the expression of TMPRSS2 at both mRNA and protein levels 48 h after treatment. The suppressive effect of ribavirin in ACE2 protein expression was shown to be dependent on cell types. Finally, proteolytic activity assays showed that ribavirin also showed an inhibitory effect on the TMPRSS2 enzyme. Based on these results, we hypothesized that ribavirin may inhibit the expression of TMPRSS2 by modulating the formation of inhibitory G-quadruplex structures at the TMPRSS2 promoter. As a conclusion, ribavirin is a potential antiviral drug for the treatment against SARS-CoV-2, and it interferes with the effects of TMPRSS2 and ACE2 expression.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Antivirales/farmacología , Regulación hacia Abajo/efectos de los fármacos , Ribavirina/farmacología , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Animales , Células CACO-2 , Chlorocebus aethiops , G-Cuádruplex/efectos de los fármacos , Humanos , Regiones Promotoras Genéticas/genética , SARS-CoV-2/fisiología , Serina Endopeptidasas/genética , Células Vero
7.
ACS Nano ; 14(6): 6383-6406, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: covidwho-595172

RESUMEN

The COVID-19 outbreak has fueled a global demand for effective diagnosis and treatment as well as mitigation of the spread of infection, all through large-scale approaches such as specific alternative antiviral methods and classical disinfection protocols. Based on an abundance of engineered materials identifiable by their useful physicochemical properties through versatile chemical functionalization, nanotechnology offers a number of approaches to cope with this emergency. Here, through a multidisciplinary Perspective encompassing diverse fields such as virology, biology, medicine, engineering, chemistry, materials science, and computational science, we outline how nanotechnology-based strategies can support the fight against COVID-19, as well as infectious diseases in general, including future pandemics. Considering what we know so far about the life cycle of the virus, we envision key steps where nanotechnology could counter the disease. First, nanoparticles (NPs) can offer alternative methods to classical disinfection protocols used in healthcare settings, thanks to their intrinsic antipathogenic properties and/or their ability to inactivate viruses, bacteria, fungi, or yeasts either photothermally or via photocatalysis-induced reactive oxygen species (ROS) generation. Nanotechnology tools to inactivate SARS-CoV-2 in patients could also be explored. In this case, nanomaterials could be used to deliver drugs to the pulmonary system to inhibit interaction between angiotensin-converting enzyme 2 (ACE2) receptors and viral S protein. Moreover, the concept of "nanoimmunity by design" can help us to design materials for immune modulation, either stimulating or suppressing the immune response, which would find applications in the context of vaccine development for SARS-CoV-2 or in counteracting the cytokine storm, respectively. In addition to disease prevention and therapeutic potential, nanotechnology has important roles in diagnostics, with potential to support the development of simple, fast, and cost-effective nanotechnology-based assays to monitor the presence of SARS-CoV-2 and related biomarkers. In summary, nanotechnology is critical in counteracting COVID-19 and will be vital when preparing for future pandemics.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Nanotecnología/métodos , Pandemias , Neumonía Viral , Betacoronavirus/genética , Betacoronavirus/inmunología , Biomimética , COVID-19 , Vacunas contra la COVID-19 , Simulación por Computador , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Citocinas/antagonistas & inhibidores , Citocinas/biosíntesis , Desinfección , Sistemas de Liberación de Medicamentos , Microbiología Ambiental , Humanos , Inmunomodulación , Máscaras , Nanomedicina , Nanotecnología/tendencias , Pandemias/prevención & control , Equipo de Protección Personal , Fotoquimioterapia , Neumonía Viral/inmunología , Neumonía Viral/prevención & control , Neumonía Viral/terapia , SARS-CoV-2 , Vacunas Virales/genética , Vacunas Virales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA